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AN APPROXIMATION TO THE VIBRATIONS OF
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This paper presents the results of investigating the axi-symmetric free vibrations of an
isotropic thin oblate spheroidal shell. An oblate spheroid is considered as a continuous
system constructed from two spherical shell caps by matching the continuous boundary
conditions. This approximation technique is used to express the results in a continuous
function analytical formation. The radii and opening angles of the spherical elements are
chosen according to the eccentricity of the oblate spheroid.

It is shown that for an ecccentricity: smaller than 0·6 the Rayleigh method reasonably
estimates natural frequencies; larger than 0·95 both of the shallow and non-shallow
spherical shell theories predict natural frequencies in close agreement; and equal to zero
an exact thin sphere solution emerges.

The method presented herein is clearly an engineering approximation for special purpose
shells and does not require the computer storage of numerical methods. Also, it may be
quite useful when utilised judiciously in many applications, such as in force response
analysis. Comparison is made between the present technique, the Rayleigh method, and
experimental data for two laboratory models. The formulation can be extended to many
types of oblate spheroids with different support conditions and still retain the functional
representation.
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1. INTRODUCTION

Oblate spheroidal shells have many practical applications; two of these are liquid oxygen
tanks used in several upper stages of space vehicles and the protective shell used as the
housing of the early-warning scanner of airborne warning and control system aircraft
(AWACS). Analytical solutions for such shells are inadequately investigated due to the
complexity of the governing equations and the difficulty of obtaining their solutions.

While the literature on free and forced vibrations of spherical shells is almost endless
[1–3], only a few papers deal with the free vibrations of oblate thin speroids. Penzes and
Burgin [4] solved the problem of free vibrations of a thin isotropic oblate spheroidal shell
by Galerkin’s method. Membrane theory and harmonic, axisymmetric motion were
assumed to derive the differential equations of motion. It was shown that Galerkin’s
method yields the exact solution for a closed spherical shell as the eccentricity of the oblate
spheroid approaches zero. This work was extended by Penzes [5] to include orthotropic
oblate spheroids. On the other hand, Combou [6] aimed at studying the axisymmetric
vibrations of prolate spheroidal shells with small eccentricities. However, it was stated that
for applying his solution to an oblate spheroidal shell, the sign of one of the parameters
used in the analysis must be changed.

† Present address: Auckland Institute of Technology, Private Bag 92006, Auckland 1020, New Zealand.
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In the present paper the free vibration characteristics of an oblate spheroidal shell are
investigated by considering an approximate practical model for the thin oblate spheroid.
This model consists of two identical thin spherical shells (caps) closed at the apex and
rigidly joined together at their edges. The radius and opening angle of the caps are
governed by the major and minor axes of the oblate spheroid. Explicit solutions using
non-shallow and shallow shell theories [7, 8] are used for the caps and the frequency
equation is deduced by using the continuity of the boundary conditions. Although the
proposed model is not general from the theoretical point of view, nevertheless, it is quite
useful for many oblate shells of practical applications. To check the practicality of this
approximation, and because of the lack of numerical data in the literature, the Rayleigh
method is used to predict upper bound frequencies, and the natural frequencies and modes
of two experimental models are investigated.

2. PROBLEM FORMULATION

The problem of vibrations of a thin oblate spheroidal shell of thickness h, radii of
curvature Ru and Rf , and principle semi-axes a and b along the major and minor axes,
respectively, may be treated by considering the spheroid as a structure composed of two
spherical caps rigidly joined at their ends. These caps have, mass density r, Young’s
modules of elasticity E, Poisson ratio n, and their centres of curvature fall along the minor
axis of the proposed structure as shown in Fig 1. Such an approximation is not far from
reality, as oblate spheroidal tanks are normally produced by joining, either by welding or
riveting, two spherical caps through a toroidal shell. The effective radius Rr of the oblate
spheroidal model represents the radius of curvature at the cap apex. This can be obtained
from the geometrical relation, (see Fig 1),

Rf =
a(1− e2)

(1− e2 cos2 f')3/2, (1)

where f' is the oblate spheroid angle. Setting f' to zero gives

Rr = a/(1− e2)1/2, (2)

where e is the eccentricity ratio defined by e=z1− (b/a)2. However, an approximate
opening angle for the model f0 may be obtained by using the following formula:

f0 = cos−1 [(Rr − b)/Rr ]. (3)

Figure 1. An oblate spheroidal shell approximated by two spherical caps.
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Figure 1, which resembles the approximate oblate shell, indicates that the geometry of
the oblate and the proposed model are almost the same in the region where the two surfaces
coalesce; however, divergence exists close to the boundaries. Further, Fig 2 shows the
effective radius and opening angle of the proposed model versus the eccentricity of the
oblate spheroid, which indicates that closer geometrical approximation is expected between
the exact and approximate model at values of e smaller than 0·6.

3. NON-SHALLOW SHELL THEORY

The equations of motion, which include the bending effect for a spherical shell, are well
developed in the literature [9]. Assuming that the temporal and spatial-dependence of free
vibrations are separable, the transverse displacement w and the tangential displacement u
may be assumed to be

w(f, t)=W(f) cos vt, uf (f, t)=Uf (f) cos vt, (4)

where v is the circular frequency, t is time and f denotes the angle measured from the
vertical axis. The f-dependent variables are given by

W(f)= s
3

j=1

(AjPnj (x)+BjQnj (x)), Uf (f)= s
3

j=1

(1+ y)Dj [AjP'nj (x)+BjQ'nj (x)], (5)

where A’s and B’s are arbitrary constants. The symbols Pn (x) and Qn (x) denote the
Legendre functions of the first and second kind, respectively, a prime denotes derivatives
with respect to f, and x=cos f. Other parameters are defined as follows:

Dj =
1+(lj −2)/[(1+ n)(1+ j)]

1− n− lj + j(1− n2)V2/(1+ j)
, nj =−0·5+z0·25+ lj , j=12R2

r /h2. (6)

The parameters lj’s are the roots of the cubic equation

l3 − [4+ (1− n2)V2]l2 + [4+ (1− n)(1− n2)V2 + (1+ j)(1− n2)(1−V2)l

+(1− n)(1− n2)[V2 −2/(1− n)][1+ (1+ n)(V2 −1/(1+ n))]=0. (7)

Figure 2. The effective radius/major axis-ratio and opening angle versus eccentricity for the oblate model.
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The non-dimensional frequency is defined by

V2 = rv2R2
r /E (8)

The general features of the solutions given by equations (5) depend on the character
of the three indices n1, n2 and n3 given by equation (6). The various combinations of
complex and real values that the indices may assume are summarised in three zones as
follows [7]

Zone I Zone II Zone III

n1 = b1 n1 = b1 n1 = b1

n2 = b2 + ib3 n2 =−0·5+ ib2 n2 = b2

n3 = b2 − ib3 n3 =−0·5+ ib3 n3 =−0·5+ ib3 .

Here b1, b2 and b3 are real numbers, and i=z−1.
For Zones II and III the Legendre functions of index −0·5+ ib are real quantities and

the corresponding values of l2 and l3 are also real; thus the solution given in the form of
equation (5) is directly applicable. However, for Zone I a pair of the Legendre functions
have complex conjugate indices and since the deflections W and Uf are real quantities,
which implies that the right side of equation (5) must be real too, the solution expressed
in terms of real functions may be written as follows:

W= s CPb1(x)+C2Re[Pb2+ ib3(x)]+C3Im[Pb2+ ib3(x)], (9)

with C2 =A2 +A3 and C3 = i(A2 −A3).
The two spherical caps are considered to be closed at the apex, f=0, and as the

Legendre function of the second kind is singular at this point, the constants B in equation
(5) are set to zero. The remaining arbitrary constants A or C (three constants for each
element) are determined from the boundary conditions. The two caps are assumed rigidly
connected along the edge f1 =f2 =f0. To insure the continuity of deflections, slopes,
moments and forces along the spatial circular junction and taking the top element as
reference, the boundary conditions my be written as (See Fig. 3)

W1 −Uf2 sin 2f0 +W cos 2f0 =0, Uf1 −Uf2 cos 2f0 −W2 sin 2f0 =0,

dW1/df1 +dW2/df2 =0, Q1 −Q2 cos 2f0 −Nf2 sin 2f0 =0,

Nf1 −Q2 sin 2f0 +Nf2 cos 2f0 =0, M1 −M2 =0, (10)

where subscripts 1 and 2 refer to the upper and lower cap, respectively. Expressions for
the membrane stress resultant Nf , the moment resultant M, and the transverse shear forces
Q in terms of the displacements W(f) and Uf (f) are determined from reference [7] and
used in the above equations. This results in six simultaneous homogeneous equations
which are used to determine the eigenvalues and eigenvectors of the posed problem.

4. SHALLOW SHELL THEORY

The applicability of the present approximate model is further investigated by using the
shallow shell theory. As the eccentricity of an oblate spheroidal shell approaches values
greater than 0·93, the opening angle f0 of the approximate oblate model reaches the value
of 30°. For such an angle the assumptions of shallowness [10] are valid. These assumptions
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neglect the contribution of the transverse shearing stress resultants to the equilibrium of
forces in the meridian and tangential directions, and neglect the contribution of stretching
displacement to the change of curvature expressions. The equations of motion of this
theory admit solutions of the form [8]

wr (r, t)=Wr (r) cos vt, ur (r, t)=Ur (r) cos vt, (11)

where wr and ur are the transverse and meridian displacement components, respectively;
Wr (r) and Ur (r) take the forms:

Wr (r)= s
3

j=1 6AjJ0 0mj
r
d1+BjY0 0mj

r
d17

Ur (r)=2
H
d 6rd Wr (r)+ (1+ n) s

3

j=1 $[(1− n2)(h/d)2(v/v0)2 − m2
j ]−1

×$ujAjJ1 0mj
r
d1+ mjBjY1 0mj

r
d1%%7, (12)

where Aj and Bj are arbitrary constants; J and Y are the Bessel functions of the first and
second kind, respectively; H and d are the shallow shell height and base radius, respectively;
and mj are the roots of

m6 − (1− n2)(h/d)2(v/v0)2m4 −12(1− n2)[(v/v0)2 −4(H/h)2]m2

+12(1− v2)(h/d)2(v/v0)2[(1− n2)(v/v0)2 −8(1+ n)(H/h)2]=0, (13)

with v0 =zEh2/rd4.
For a finite displacement at the apex the constants B are set to zero to avoid the

singularity produced by Y0 and Y1 at r=0. The remaining six constants A, three for the
upper element and three for the lower, are determined from the boundary conditions at
r= d. Using subscripts 1 and 2 to refer to the upper and lower cap, respectively, these
conditions may be written as (see Figure 3(b))

Figure 3. Matching of boundary conditions of two shell-caps: (a) non-shallow shell model; (b) shallow shell
model.
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Wr1 +Wr2 =0, Ur1 −Ur2 =0, $dWr

dr %1

+$dWr

dr %2

=0,

N1 +N2 cos 2f0 −Q2 sin 2f0 =0, Q1 −N2 sin 2fo −Q2 cos 2f0 =0, M1 −M2 =0.

(14)

Expressions for the forces N and Q and the moments M in terms of Wr and Ur are
determined [10] and used in equation (14).

Whether using the non-shallow shell theory or the shallow shell theory, the procedure
for obtaining the natural frequencies and mode shapes is the same. It consists of
substituting the appropriate expressions for W, U, N, M, and Q in the boundary
conditions, equations (10) or (14), accordingly, then six simultaneous homogeneous
equations in terms of the constants are obtained. These may be written in the form

[Cjk ][Ajk ]=0 (j, k=1, 2, . . . , 6) (15)

where the coefficients Cjk are functions of the natural frequency V and are given in the
Appendix. The natural frequencies are obtained for given values of f0, n and h/R by
searching for the vanishing determinants =Cjk =. Once a natural frequency is known, the
corresponding mode shape is obtained by evaluating Cjk and then determining Ajk from
equation (15).

5. RAYLEIGH’S ENERGY METHOD

Due to the complexity encountered in solving the exact equations of motion of an oblate
spheroidal shell, the Rayleigh method is used to determine the first two natural frequencies
of the system under investigation. The Rayleigh quotient for a conservative system may
be written as:

v2 =Umax/Kmax , (16)

with Umax and Kmax as the system maximum potential and kinetic energy, respectively (see
Appendix).

If the assumed mode shapes satisfy all boundary conditions, equation (16) results in an
upper bound approximation. However, many investigators [11] have established the fact
that it is sufficient to satisfy deflection and slope conditions only and achieve
acceptable approximations of natural frequency. In solving the equations of kinetic and
potential energy of a complete oblate spheroidal shell, it should be noted that there are
no physical boundary conditions. However, the only conditions to be imposed are that
the displacements should be single-valued and bounded at every point of the shell,
including the north and south poles. This fact is in resemblance to that of a thin sphere.
Based on this argument, reference [4] shows that for many applications using the thin
sphere mode shapes to represent those of an oblate spheroid as an acceptable assumption.
Therefore, in the present work the first two mode shapes of a spherical shell are considered
to satisfy the boundary conditions of an oblate spheroidal shell and assumed to take the
form

W= s
n

j=0

ajf'j, Uf =−f sin 2f', (17)

where a’s and f are related coefficients and the ratios f/a are chosen carefully to represent
the approximate modes.
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T 1
Specification of tested models

Parameter Model 1 Model 2

a(m) 0·185 0·18
b(m) 0·135 0·07

e 0·683 0·921
h(mm) 1·5 1·5
E(GPa) 68 68
r(kg/m3) 2720 2720

n 0·3 0·3

A fifth order polynomial is used for W. However, to check its accuracy, the first two
natural frequencies and modes of a full thin sphere were determined by using equation
(17) as well as by using the exact solution [3] and prove to be in good agreement. The
coefficients of this polynomial are given in the Appendix for different values of e.
Substitution of the assumed modes in equation (16) and selecting appropriate values for
the shell properties results in upper bound values of the first two natural frequencies
associated with the first two modes for various values of e.

6. EXPERIMENTAL WORK

Two aluminium spheroidal shell models with the specifications given in Table 1 were
constructed. Each model was formed by using two identical shell elements with a half of
an ellipse cross-section. These elements were formed by making use of spinning techniques
as follows: A profile forming wooden plate was made to be the negative of the required
shape of half an ellipse. This plate was used to produce a cast iron pattern of the desired
shape. The blank to be formed is forced to follow the iron pattern, which was attached
to the chuck of a lathe machine, to assume its shape. The two shell elements were then
stuck together using special aluminium filled adhesive paste ensuring the continuity of the
two elements to form a closed spheroidal shell. The rigidity of the joined ends were checked
by applying different impact loads and proved to be well suited for the purpose of the
present experiments.

Theories indicate that the amplitude of radial motion in axisymmetric modes is
maximum at the apex. As the aim of the present work is to excite axisymmetric modes
only, ensuring at the same time free edges, one of the apexes was joined directly through
a bolt and nut to an electromechanical shaker and the response was measured at the other
apex in order to exclude any non-symmetrical modes. The shaker was excited through an
amplifier at various frequencies and a resonance was distinguished by observing the sharp
increase in the amplitude of the piezoelectric transducer output displayed on an
oscilloscope, and by the emitted acoustic tone. Once a natural frequency was recorded the
exciting frequency held fixed and the transducer slowly and lightly moved along the
meridian and tangential directions to trace nodal lines associated with the natural
frequency. Mode shapes were then reported after normalisation in Figure 8.

7. RESULTS AND DISCUSSION

The lack of numerical results concerning the undergoing problem, the complexity of
obtaining a closed form solution for the free vibration characteristics of an oblate spheroid,
and in an attempt to investigate the practicality and feasibility of the present theoretical
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T 2
Natural frequencies in Hz for a full sphere [3]

m DAS BMM RM

2 5281 5284 5335
3 6321 6323 6510
4 6883 6884 —†

†Not predicted.

model the following steps are taken: (1) The developed model is general and to test its
validity the natural frequencies for a thin sphere, which is considered as an ultimate shape
of the oblate spheroid, are determined. This is done by setting the eccentricity to zero in
the present boundary matching method and the results are compared with the values given
by Tavakoli and Singh [3] using the direct analytical solution DAS. Table 2 shows the
natural frequencies of the first three axi-symmetric modes of a full sphere of 0·1143 m
radius and 5·7 mm thickness with material properties of E=207 GPa, r=7800 kg/m3 and
n=0·3. These frequencies were obtained by applying the DAS and the two methods
adopted in this work, namely, the Rayleigh method RM and the boundary matching
method BMM. From Table 2 it can be perceived that the DAS and the BMM methods
give natural frequencies within computational errors. This is attributed to the fact that the
latter method is nothing but another approach for obtaining closed form solutions. (2) The
Rayleigh method is used for the matter of comparison as well as for further investigation.
Table 2 obviously shows that the Rayleigh method predicts frequencies higher than the
other two methods. This fact is inherent in this method for its higher bound prediction.
(3) Table 3 gives the results for the natural frequencies of the two tested models with the
specifications given in Table 1. These results are obtained by using the BMM, RM and
the experimental investigations for two values of e. The theoretical values predicted by the
BMM are, in general, higher than the corresponding experimental values for e=0·683 and
lower than those for e=0·921. This may be attributed to the fact that in the former the
theoretical caps are stiffer than the corresponding experimental ones while in the latter the
theoretical model approaches a plate (e=0·921) which has less stiffness. Therefore, from
the above results, it may be concluded that the two methods used in this work give feasible
results for moderate values of e and may be used for further study.

One of the main indices of an oblate spheroid is its eccentricity e. Fig. 4 depicts the
non-dimensional natural frequency V of the first two modes of vibration as a function of
e, obtained by using the RM and the BMM based on the non-shallow shell theory. It is
shown that the natural frequency decreases as e increases. Also it is indicated that the curve
obtained by the RM adjoins to that of the BMM with slightly higher values until e reaches
0·6 where the former starts to diverge. This behaviour could be explained by the fact that

T 3
Natural frequencies in Hz for the tested models

e=0·683 e=0·921
ZxxxxxxxCxxxxxxxV ZxxxxxxxCxxxxxxxV

Frequency BMM RM Experimental BMM RM Experimental

1 2500 3100 2400 1574 4246 1557
2 2978 3398 2600 1734 3248 1950
3 3082 – 2900 1744 – 2100
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Figure 4. Non-dimensional natural frequency versus eccentricity ratio: ——, first mode BMM; — —, first
mode RM, – · –, second mode BMM; — · · —, second mode RM.

the mode shapes of a closed thin sphere, employed by RM, would resemble those of an
oblate spheroid up to certain eccentricity. As e increases the oblate spheroid tends to flatten
up. Such ‘‘flattening’’ causes the uncoupling of the transverse motion and the tangential
motion, where the latter is minimised and the former approaches that of a circular plate
(a circular plate is an oblate one with e=1). However, large divergence is exhibited by
the RM for e greater than 0·6. This is attributed to the additional constraints of deviation
from a true mode shape which causes larger values of potential energy and thus the natural
frequency abruptly diverges to higher values with larger e. Therefore, values of V predicted
by the RM are in tremendous error for e larger than 0·6. This fact is clearly emphasised
in the values given in Table 3 where the RM gives large error for e=0·921.

In this work eg. an oblate spheroid of e=0·93 and larger might be modelled as a
structure composed of two shallow spherical shell caps rigidly joined together at their edges
with an opening angle 30° or less as shown in Fig 3. Figure 5 shows that both of the
non-shallow and shallow shell theories predict natural frequencies with
acceptable convergence. Further the two theories predict very close frequencies for
ee 0·98. However, for eQ 0·93, the opening angle of the approximate spherical shell
model exceeds 30° and thus the assumptions of shallowness will no longer hold.

To further examine the validity of the proposed model, as well as to investigate the effect
of the thickness ratio h/a, the first ten bending modes and the first two membrane modes
for an oblate shell with e=0 were reproduced and the results match that given by Fig. 2

Figure 5. Non-dimensional natural frequency versus eccentricity ratio: ——, non-shallow theory; — —,
shallow theory.
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Figure 6. Non-dimensional natural frequency versus h/a of an oblate model with e=0·6 using BMM.

of Kalnins [7] (is is not given here for brevity), with negligible computational errors.
However, using the non-shallow shell theory, Fig. 6 shows the first few frequencies as
functions of the thickness ratio for e=0·6 and n=0·3. It is shown that the natural
frequencies of the bending modes increase with the thickness ratio. Since the membrane
modes occur at relatively high values of V in comparison to the bending modes, only the
first of the former modes is considered. A conclusion is reached, which is identical to that
of a full sphere [7], is that the membrane modes have very small variation with the thickness
ratio.

Figure 7 shows the variation of the natural frequency of the first three bending modes
and the first membrane mode as a function of e. It is clearly observed that as e increases,
the natural frequencies associated with the bending modes decrease and that associated
with the membrane mode increases. Steeper variations are observed for ee 0·5 where the

Figure 7. Non-dimensional natural frequency versus e for different modes: ——, first bending mode; — —,
second bending mode; — · —, third bending mode; – · · –, membrane mode BMM; - - - -, membrane mode RM.
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Figure 8. Normalized mode shapes associated with the first three natural frequencies of Table 3: ——,
theoretical based on non-shallow theory; . . . , experimental. (a) e=0·683; (b) e=0·921.

bending frequency curves converge to very close values. Similar behaviour was observed
[12] for a cylindrical shell with an elliptical cross-section. This behaviour is attributed to
the geometrical structure of the shell. As e increased from zero, the shape of the oblate
spheroid departs from being a full sphere toward being a flat plate which has a stiffness
lower than that of a sphere. Thus the first axisymmetric natural frequency increases by
introducing a slight curvature to a circular plate. On the other hand the membrane mode
shows an opposite behaviour which is attributed to the fact that the stretching strain energy
for a flat plate is dominant and thus the natural frequency becomes larger with e. Both
of the BMM and the RM are used to show the latter behaviour.

The modes of vibration can be easily determined from equation (15). Using the
non-shallow shell theory, Fig. 8 shows the modes of vibration for the two experimental
models. The experimental modes are obtained after normalisation with respect to the apex.
Exploring these modes indicates that the experimental and theoretical modes have the same
trends of variation and they have the same nodal lines.

8. CONCLUSIONS

Although it is customary to use methods such as finite elements to handle the vibration
characteristics of an oblate shell, the present approximation, in general, seems not to have
been done before. The present model is of course only approximate, but the results are
reassuring for many practical shells. Further, this approximation model is handy and may
be utilised where closed formulation is needed such as in using modal analysis for forced
response. This can easily be done by using Fig. 2 to obtain the approximate effective radius
Rr and angle f0. The model predicts reasonably well the free vibration natural frequencies
and mode shapes for different values of eccentricity ratio. However, the Rayleigh method
is of no use for eccentricities less than 0·6.
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APPENDIX

A.1.   Cjk

The coefficients of equation (15) are summarised below:

A.1.a. Non-shallow shell case

C1k =Pnk (cos f0), C2k =−(1+ n)DkP'nk (cos f0), C3k =Pnk (cos f0),

C4k =
h3

12(1− n2)R3
r
[1+ (1+ n)Dk )(n+ lk −1)Pnk (cos f0)]

C5k =
h

(1− n2)Rr
[(1+Dklk )Pnk (cos f0)+ (1− n) cot f0DkP'nk (cos f0)]

C6k =
h

12(1− n2)R2
r
(1+ (1+ n)Dk )[lknPnk (cos f0)−(1− n) cot f0P'nk (cos f0)],

(A1)

with k=1, 2, 3. However, for k=4, 5, 6 the coefficients are

C1j =−C2j sin 2f0 +C1j cos 2f0, C2k =−C2j cos 2f0 −C1j sin f0, C3k =C3j ,

C4k =−C4j cos f0 −C5j sin 2f0, C5k =C4j sin 2f0 −C5j cos 2f0, C6k =−C6j , (A2)

where j= k−3.
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A.b. Shallow shell case

C1k =J0(mk )+
(1+ n)mkJ1(mk )

(1− n2)(h/d)2(v/v0)2 − m2
k
,

C2k =J0(mk ), C3k = mkJ1(mk ),

C4k =
h
Rr $mkJ1(mk )+(1+ n)(h/d)2(v/v0)2J0(mk )

(1− n2)(h/d)2(v/v0)2 − m2
k %,

C5k =−
h3

12(1− n2)d3 [m3
k J1(mk )],

C6k =−
h3

12(1− n2)d2 [mk (1− n)J1(mk )−mkJ0(mk )], (A3)

with k=1, 2, 3. However, for k=4, 5, 6 the coefficients are

C1k =−C1j , C2k =C2j , C3k =C3j ,

C4k =C4j cos 2f0 −C5j sin 2f0, C5k =−C4j sin 2f0 −C5j cos 2f0, C6k =−C6j , (A4)

where j= k−3.

A.2.  

An expression for the maximum potential energy was derived and may be written as

Umax =
Eh

2R2
f (1− n)2 g

2p

0 g
2p

0 6 h2

12Rf $$ d
df' 0Uf −

dW
df'1%

2

+
tan2 f'

R2
u $Uf −

dW
df'%

2

+
2n tan f'

RuRf $Uf −
dW
df'% d

df' 0Uf −
dW
df'1%+$dUf

df'
+W%

2

+
R2

f

(Ru sin f')2 (Uf cos f'+W sin f')2 +
2Rfn

Ru sin f' $dUf

df'
+W%

×(Uf cos f'+W sin f')7 RfRu sin f' df' du. (A5)

T 4
Power series cofficients

e fo Rr a0 a1 a2 a3 a4 a5 b

0·0 90 20 1·0 0·0163 −1·598 0·137 0·517 −0·123 0·5
0·3 85 21 1·0 0·0163 −1·599 0·137 0·517 −0·123 0·5
0·6 70 24 1·0 −0·0504 −2·231 2·021 −2·094 1·024 0·37
0·8 53 30 1·0 0·2090 −3·300 3·0 −4·2 3·040 0·35
0·95 27 57 0·916 −0·144 −5·563 −17·6 63·4 −37·27 0·15
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The maximum kinetic energy expression is

Kmax =
v2rh

2 g
2p

0 g
2p

0

(U2
f +W2)RfRu sin f' du df', (A6)

where Ru = a/(1− e2 cos2 f')1/2

Equating the maximum kinetic energy to the maximum potential energy, an expression
for the natural frequency is obtained.

The constants in equation (17) were carefully selected to match the first and second
modes [7] for different values of e and are given in Table 4. The values of Rr and f0 are
determined from equation 2 and 3, respectively.


